Probing Neutrino Models in Extra Dimensions with Muon to electron conversion

We-Fu Chang

National Tsing Hua University (Hsinchu, Taiwan)

2012 Project X Physics Study, 18 June, 2012

Plan

- ullet why $\mu-e$ conversion and ex-dim neutrino model
- a toy model: Zee model with split fermion (PRD 2011, with YTC and SCL)
- conclusion

Most of the SM parameters relate to Flavor Physics

- 21(+2) out of 27(+2) SM free parameters relate to the fermion masses.
- Extra dimension provides a new frame work for Yukawa
- ADD, RS, SF, UED, deconstruction....
- Neutrino models involve extra-dimension alleviate some problems in 4D theories
- Just like quark mixing, nonzero neutrino masses imply LFV

some common features of ex-dim model

- fermion masses and mixing ⇔ WF overlapping in ex-dim
- in mass basis, KK gauge boson has tree-level LFV couplings
- usually, $\mu \to 3e$, μ -e conversion, and the like are much bigger than $\mu \to e \gamma$
- tree vs loop

effective operator analysis-1

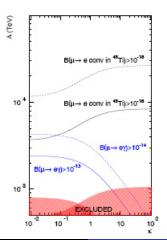
$$\begin{split} \frac{\mathcal{L}_{\mathrm{eff}}}{\sqrt{2}G_F} &= \bar{e}(s-p\gamma^5)\mu\sum_q\bar{q}(s_q-p_q\gamma^5)q\\ &+ \bar{e}\gamma^\alpha(\upsilon-a\gamma^5)\mu\sum_q\bar{q}\;\gamma_\alpha(\upsilon_q-a_q\gamma^5)q\\ &+ \frac{1}{2}\bar{e}(t_s+t_p\gamma^5)\sigma^{\alpha\beta}\mu\sum_q\bar{q}\;\sigma_{\alpha\beta}q + \mathrm{H.c.}\\ B_{\mathrm{conv}} &= \frac{p_eE_eG_F^2F_p^2m_\mu^3\alpha^3Z_{\mathrm{eff}}^4}{2\pi^2Z\Gamma_{\mathrm{capt}}}\{|4eA_LZ+(s-p)S_N\\ &+ (\upsilon-a)Q_N|^2+|4eA_RZ+(s+p)S_N\\ &+ (\upsilon+a)O_N|^2\} \end{split}$$

 S_N , Q_N : the coherent scalar and vector coupling of nuclei N.

effective operator analysis-2

$$\mathcal{L} = rac{m_{\mu}}{(1+\kappa)\Lambda^2}ar{\mu}_R\sigma_{\mu
u}\mathsf{e}_\mathsf{L}\mathsf{F}^{\mu
u} + rac{\kappa}{(1+\kappa)\Lambda^2}ar{\mu}_\mathsf{L}\gamma_\mu\mathsf{e}_\mathsf{L}\left(\sum_{q=u,d}ar{q}_\mathsf{L}\gamma^\mu q_\mathsf{L}
ight)$$

Mu2e Proposal



The original 4D Zee Model

- In addition to SM Φ_1 , one more $SU(2)_L$ Higgs doublet Φ_2 and an extra $SU(2)_L$ singlet charged Higgs h.
- The lagrangian

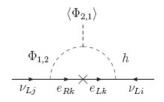
$$\mathcal{L}_{Zee} = -f_{ab}^{1} \bar{\Psi}_{aL} \Phi_{1} e_{bR} - f_{ab}^{2} \bar{\Psi}_{aL} \Phi_{2} e_{bR}$$

$$-M_{12} \Phi_{1} i \tau_{2} \Phi_{2} h^{*} - f_{ab}^{h} \overline{\Psi_{aL}^{c}} i \tau_{2} \Psi_{bL} h + H.c. ,$$

- a, b: the generation indices.
- This lepton number violating coupling term $\overline{\Psi^c}\Psi h$ is the key for generating the effective neutrino Majorana masses.

Its (good) consequences

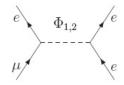
- No need of ν_R .
- No tree level masses. Neutrino masses generated at 1-loop.



 A natural and economical explanation of the smallness of neutrino masses.

FCNC

• Well known phenomenological problem in 2HDM.



The charged lepton mass matrix,

$$\mathcal{M}^{\rm e}_{ab} = rac{1}{\sqrt{2}}(y^1_{ab}v_1 + y^2_{ab}v_2)$$

can be diagonalized by bi-unitary transformation:

$$V_L^\dagger \mathcal{M}_{ab}^e V_R = \mathsf{diag}\{m_e, m_\mu, m_ au\}$$

• In mass basis, both Yukawa $(V_L^{\dagger} y^{1,2} V_R)_{ab}$ are not flavor diagonal.

Zee-Wolfenstein model

- Wolfenstein proposed that only Φ_1 couples to the lepton, $f_{ab}^2 = 0$.
- Additional $L_e-L_\mu-L_ au$ symmetry gives inverted hierarchy and the bi-maximum mixings

$${\cal M}_{
u} \sim \left(egin{array}{ccc} 0 & 1 & 1 \ 1 & 0 & 0 \ 1 & 0 & 0 \end{array}
ight)$$

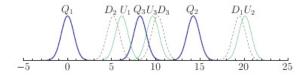
- The Zee-Wolfenstein model has been studied extensively in the past thirty years and found to be inconsistent with the neutrino data.
- However, the leading order pattern is very close to the data.

Not ruled out but not pretty either

- However, the original Zee model is NOT ruled out.
- Still possible to accommodate the observed neutrino data if both Higgs doublets couple to the leptons.
- But suffer from having too many arbitrary parameters (21 unknown complex Yukawa in the original Zee model for 3 generations) and the fine tuning problem to avoid the persist FCNC.

A New Paradigm for studying the flavor physics

- Flavor Problem ⇔ Geometry in extra dimension
- Split fermion model as an example:
 - Linear displacement between left-handed and right-handed fermions in the fifth dimension becomes exponentially suppressed 4D Yukawa.
 - A realistic configuration to fit quark masses and mixings



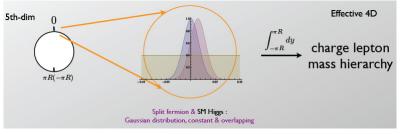
- The space-time is $M_4 \times S_1/Z_2$ orbifold. The fifth-dim coordinate $0 \le y \le \pi R$, R radius of the S_1
- Z₂ transforms y ← -y, every bulk filed must be even or odd under this transformation.
- We assign Φ_1, Φ_2, h to be +, -, under this Z_2

$$\begin{split} \Phi_1 &= \frac{\Phi^{(0)}}{\sqrt{2\pi R}} + \sum_n \frac{\Phi_1^{(n)}}{\sqrt{\pi R}} \cos \frac{ny}{R} \\ \Phi_2 &= \sum_n \frac{\Phi_2^{(n)}}{\sqrt{\pi R}} \sin \frac{ny}{R}, h = \sum_n \frac{h^{(n)}}{\sqrt{\pi R}} \sin \frac{ny}{R} \end{split}$$

• The KK mode masses are

$$M_n^2 = M_0^2 + \frac{n^2}{R^2}$$

• Assumption: all SM chiral fermions are Gaussian distributed in y, universal width $1/\mu \equiv \sigma$, $\sigma \ll R$ ($\sigma/R = 5 \times 10^{-4}$ for numerical), and $c_i^{L/R}$ the peak location of fermion-i.



• After SSB, $\langle \Phi_1^{(0)} \rangle = v/\sqrt{2}$,

$$\mathcal{M}^{\rm e}_{ab} = \hat{f}^1_{ab} rac{v}{\sqrt{2}} \exp \left[rac{-(c_a^L - c_b^R)^2}{2\sigma^2}
ight] \,.$$

• The relevant Lagrangian for 5D Zee model is given by

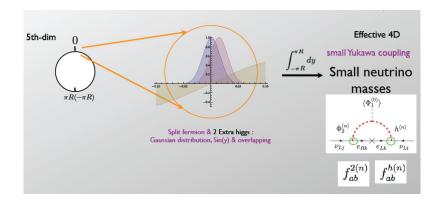
$$\mathcal{L}_{5DZee} = -\sqrt{2\pi R} \hat{f}_{ab}^{1} \underline{\hat{\psi}_{aL}} \hat{\Phi}_{1} \hat{e}_{bR} - \sqrt{2\pi R} \hat{f}_{ab}^{2} \underline{\hat{\psi}_{aL}} \hat{\Phi}_{2} \hat{e}_{bR}$$

$$-\sqrt{2\pi R} \hat{f}_{ab}^{h} \underline{\hat{\psi}_{aL}^{c}} i\tau_{2} \hat{\psi}_{bL} \hat{h} - \frac{\kappa}{\sqrt{2\pi R}} \hat{\Phi}_{1} i\tau_{2} \hat{\Phi}_{2} \hat{h}^{*} + H.c. ,$$

 \hat{f} 's and κ are dimensionless.

• κ acts as M_{12} in the original Zee model and it controls the overall neutrino masses.

• Effective 4D Yukawa are determined by overlapping as well:



- Assuming that all 5D Yukawa couplings, \hat{f}_{ab}^1 , are of the same order, the CL mass hierarchy becomes a problem of finding the solution of the SF peak locations $\{c_1^R, c_2^R, c_3^R, c_1^L, c_2^L, c_3^L\}$ in the fifth dimension. 21 complex Yukawa in 4D Zee \Rightarrow 6 c's + 1/R.
- The mass matrix can be diagonalized by a bi-unitary transformation,

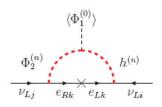
$${\sf diag}\{m_e,m_\mu,m_ au\}=U_L^\dagger {\cal M}^e U_R$$
 .

In CL mass basis, the Yukawa couplings become $f^{2(n)} \Rightarrow U_L^{\dagger} f^{2(n)} U_R$, and $f^{h(n)} \Rightarrow U_L^T f^{h(n)} U_L$.

• 7B people in the world. Everyone is unique even we share 99.9% of DNA.

 But it's easy to differentiate 2 diff species. (98.5% of DNA are common in human and chimps)

Neutrino Mass Generation



• The neutrino mass is generated at 1-loop level. For $1/R \gg M_{\Phi_2,0}, M_{h,0}$, it is

$$\mathcal{M}_{ij}^{
u} \simeq rac{1}{16\pi^2} \sum_{n=1}^{\infty} \sum_{k} \left(rac{\kappa
u R}{2\sqrt{2}\pi}
ight) rac{m_k}{n^2} \left[\left(f_{ik}^{2(n)}
ight)^* f_{kj}^{h(n)} + \left(f_{jk}^{2(n)}
ight)^* f_{ki}^{h(n)}
ight].$$

• In large 1/R limit, m_{ν} is NOT sensitive to $M_{\Phi_2,0}, M_{h,0}$.

Numerical search

4 sets are all	Configuration	ic-higgs cor	c_1^{pling}	c_2^R	c_3^R	c_1^L	c_2^L	c_3^L
Inverted hierarchy.	I	0.389	10.112	2.989	9.592	14.350	13.954	6.060
	II	1.054	9.789	9.570	10.557	5.715	13.498	5.201
	Ш	0.169	9.416	8.956	18.602	5.881	13.249	13.591
	IV	0.974	1.371	8.159	17.663	12.595	12.106	4.346

TABLE I: The four viable configurations which can accommodate charge lepton and neutrino data in the same time. The split fermion location c's are in the unit of $\sigma (= 5 \times 10^{-4} R)$.

Configuration	n $m_e(\text{MeV})$	$m_{\mu}({ m MeV})$	$m_{ au}({ m GeV})$	$\sin^2(2\theta_{12})$	$\sin^2(2\theta_{23})$	θ_{13} (rad)	(deg)
I	3.1 ± 1.5	120(22)	1.73(31)	0.79(24)	0.43(26)	0.11(8)	6.3(46)
п	6.3 ± 3.0	119(20)	2.49(48)	0.84(18)	0.72(24)	0.16(11)	9.2(63)
Ш	0.64(12)	122(22)	1.70(31)	0.76(27)	0.56(27)	0.33(20)	19(11)
IV	0.49(10)	78(14)	2.25(43)	0.83(20)	0.93(08)	0.13(7)	7.4(40)

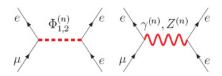
TABLE II: Charged lepton masses and neutrino mixings in the 4 viable configurations

• Only inverted hierarchical masses (in meV) are found.

Configuration	m_1^{ν}	m_2^{ν}	m_3^{ν}	$ m^{\nu}_{ee} $
I	38 ± 13	46 ± 14	1.4 ± 1.3	14 ± 7
II	41 ± 16	45 ± 15	5.1 ± 4.2	6 ± 3
III	40 ± 16	45 ± 16	6.2 ± 5.0	8 ± 4
IV	39 ± 16	49 ± 15	5 ± 7	9 ± 5

Phenomenology

- Only Z_2 -even $\Phi_1^{(0)}$ gets nonzero VEV, SM Higgs Yukawa is always flavor diagonal. The LFV in the 5D Zee model is $\sim 10^{-2}$ smaller than the 4D Zee model.
- KK gauge boson or scalar have tree-level FCNC couplings.
- tree-level LFV processes will be much larger than the loop induced ones, e.g. $Br(\mu \to 3e) \gg Br(\mu \to e\gamma)$.



KK gauge boson dominates

- ullet Exp: $Br(\mu
 ightarrow 3e) < 10^{-12}$ and $Br(au
 ightarrow l_1l_2l_3) < 3 imes 10^{-8}$
- Summing up the contrib. of the first 200 KK photon and Z.

Decay mode	Conf. I	Conf. II	Conf. III	Conf. IV
$Br(\mu^- \to e^+ e^- e^-)$	$4(2)\times10^{-13}$	$1.6(6) \times 10^{-13}$	$2(1) \times 10^{-13}$	$1.3(7) \times 10^{-13}$
$Br(\tau^- \to e^+e^-e^-)$	$1.9(9) \times 10^{-11}$	$9(6) \times 10^{-14}$	$1.5(1.5) \times 10^{-14}$	$1.3(1.3) \times 10^{-18}$
$Br(\tau^- \to \mu^+ \mu^- e^-)$	$1.0(5) \times 10^{-11}$	$5(3) \times 10^{-14}$	$1.0(9) \times 10^{-14}$	$1.2(1.2) \times 10^{-18}$
$\overline{Br(\tau^- \to e^+ e^- \mu^-)}$	$4(3)\times10^{-13}$	$3.0(2.8) \times 10^{-14}$	$2.8(2.6) \times 10^{-13}$	$3(2)\times 10^{-13}$
$Br(\tau^- \to \mu^+ \mu^- \mu^-)$	$7(6) \times 10^{-13}$	$5.3(5.0) \times 10^{-14}$	$7(6) \times 10^{-13}$	$1.1(6)\times 10^{-12}$

• Doubly suppressed rare tau decays $au o e^-\mu^+e^-$, $e^-e^+\mu^-$, $\mu^-e^+\mu^-$, $\mu^-\mu^+e^-$ not considered.

LFV at precision

- No obvious pattern among $Br(\mu \to e^-e^+e^-)$, $Br(\tau \to \mu^-\mu^+\mu^-)$, and $Br(\tau \to e^-e^+e^-)$ across the four configurations we found. They will provide a handle to distinguish different geography in the split fermions scenario.
- All four configuration give $\Lambda_{\mu \to e} \sim 4 \times 10^3$ TeV \Rightarrow could be probed at the proposed Mu2e experiment.
- This shows the importance of improving of the current LFV experimental bounds. They will provide crucial information to decipher the origin of flavor physics.

LFV at high energy

- LFV decay $V^{(1)} o I_i^+ I_j^-$ is proportional to $\left| g_{L,ij}^{V_1} \right|^2 + \left| g_{R,ij}^{V_1} \right|^2$.
- Since $\sin^2\theta_W=0.23\sim 1/4$, $\left|-1/2+\sin^2\theta_W\right|\sim\left|\sin^2\theta_W\right|$, hence LFV branching ratios of the $\gamma^{(1)}$ and $Z^{(1)}$ are proportional to each other mode by mode.
- If LFV dominated by the first KK gauge boson, $V^{(1)}$, be it the $\gamma^{(1)}$ or $Z^{(1)}$, one has

$$\frac{Br(V^{(1)} \rightarrow \tau e)}{Br(V^{(1)} \rightarrow \mu e)} : \frac{Br(V^{(1)} \rightarrow \tau \mu)}{Br(V^{(1)} \rightarrow \mu e)} \sim \frac{Br(\tau \rightarrow 3e)}{Br(\mu \rightarrow 3e)} : \frac{Br(\tau \rightarrow 3\mu)}{Br(\mu \rightarrow 3e)} .$$

Conclusion

- flavor may have ex-dim origin
- intense frontier is complementary to high energy frontier.
 ex-dim could be probed indirectly at low energy
- in particular, LFV provides invaluable information of the origin of neutrino masses
- generally speaking, $\mu \to 3e$ and μe conversion is favored in ex-dim models.